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Abstract. A noisy damping parameter in the equation of motion of a nonlinear oscillator renders the fixed
point of the system unstable when the amplitude of the noise is sufficiently large. However, the stability
diagram of the system can not be predicted from the analysis of the moments of the linearized equation.
In the case of a white noise, an exact formula for the Lyapunov exponent of the system is derived. We then
calculate the critical damping for which the nonlinear system becomes unstable. We also characterize the
intermittent structure of the bifurcated state above threshold and address the effect of temporal correlations
of the noise by considering an Ornstein-Uhlenbeck noise.

PACS. 02.50.-r Probability theory, stochastic processes and statistics (see also section 05 Statistical
physics, thermodynamics, and nonlinear dynamical systems) – 05.40.-a Fluctuation phenomena, random
process, noise and Brownian motion – 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin,
etc.)

1 Introduction

It is a well-known fact that a multiplicative noise acting on
a dynamical system can generate unexpected phenomena
such as stabilization [1,2], stochastic transitions and pat-
terns [3] or stochastic resonance [4]. As far as the stability
of a random dynamical system is concerned, the exactly
solvable example of a nonlinear first-order Langevin equa-
tion shows that the behaviour of the moments of the lin-
earized equation can be misleading: higher moments seem
to be always unstable although it is known that the crit-
ical value of the control parameter is the same as that
of the deterministic system [5]. This apparent contradic-
tion is due to the existence of long tails in the stationary
probability distribution of the linearized equation which
are suppressed when the nonlinearities are taken into ac-
count. The same type of conclusion can be drawn for a
second-order system, namely a nonlinear oscillator with
fluctuating frequency. The energetic stability analysis of
the linearized system has been performed long ago [6,7]
but it leads to an erroneous phase diagram. In fact, be-
cause of the nonlinearities, the noise can even enhance
the stable phase [1,2]. Besides, a non-perturbative reen-
trant transition can occur: a noise of small amplitude sta-
bilizes the system, but a strong noise destabilizes it. Simi-
lar features hold in spatially extended systems such as the
Ginzburg-Landau and Swift-Hohenberg equations driven
by a noisy control parameter [3,8]. Here again, the ob-
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served threshold shift can not be tackled by the analysis
of the moments’ behaviour alone.

In this paper, we study the nonlinear oscillator with
random damping. This dynamical system, in which the
noise acts on the velocity variable rather than on the po-
sition, provides another example of a bifurcation induced
by a multiplicative noise. This model was introduced in
the study of the generation of water waves by wind [9]
where the turbulent fluctuations in the air flow is mod-
eled by a noise. This model is also relevant in the study
of dynamical systems with an advective term where the
corresponding velocity fluctuates. This problem has been
investigated in [10,11] via the stability of the moments of
the linearized equation. Here, we demonstrate that, as in
the case of the random frequency oscillator, the moments
stability analysis has no relevance and can not be used to
derive the instability threshold. We shall obtain the ex-
act phase diagram of the system thanks to an instability
criterion valid for general nonlinear stochastic dynamical
systems [12,13].

The outline of this work is as follows. In Section 2, we
define the model and summarize the results obtained from
the stability analysis of the moments. The main part of the
paper (Sect. 3) is devoted to the calculation of the Lya-
punov exponent of the system from which the marginal
stability curve is drawn. We then analyze the nature of
the bifurcation and show that the bifurcated state is in-
termittent (Sect. 4). In the last section, we consider an
Ornstein-Uhlenbeck noise to investigate the effect of tem-
poral correlations on the instability threshold.
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2 Definition of the model and basic results

We consider the following stochastic dynamical system:

ẍ + [r + ax2 − ξ(t)]ẋ + αx = −bx3 , (1)

where ξ(t) is a white noise with intensity D and the pa-
rameters a and b are taken to be positive in order to have
a stabilizing effect. The mean value of the damping r is
also positive whereas the coefficient α of the linear term
can be either positive or negative. In fact, as far as the sta-
bility of the fixed point is concerned, the α < 0 case can
be reduced to the α > 0 case as follows. For α < 0 and in
the absence of noise, the oscillation around the x = 0 po-
sition is unstable and the new equilibrium position in the
saturated regime is x0 = ±√−α/b. Defining y = x − x0,
we observe that y satisfies:

ÿ + (r − aα

b
+ 2ax0y + ay2)ẏ − 2αy

= ẋξ(t) − b(3x0y
2 + y3) . (2)

The linear part of this equation is the same as that of
equation (1) once the substitutions r′ = r − aα/b and
α′ = −2α are made. The coefficient α′ is now positive.
We thus take α > 0. Before proceeding, we write time
and position in dimensionless units by multiplying t and
x by the factors 1/

√
α and

√
a/r, respectively. Defining

the following parameters:

γ =
r√
α

, ∆ =
D√
α

and k =
br

aα
, (3)

equation (1) becomes

ẍ + γ(1 + x2)ẋ + x = ẋξ(t) − kx3 , (4)

where the autocorrelation of the white noise is given by
〈ξ(t)ξ(t′)〉 = ∆δ(t − t′) (as usual, the brackets represent
an average on the realizations of the noise). The aim of
this work is to study the stability of the fixed point x = 0
of equation (4) as a function of the values of the different
parameters γ, ∆ and k.

We now summarize the results for the stability of the
moments of the amplitude x, obtained by linearizing equa-
tion (4) around the fixed point x = 0. It can be shown that
the first moment satisfies:

d2

d t2
〈x〉 +

(
γ − ∆

2

)
d

d t
〈x〉 + 〈x〉 = 0 . (5)

The first moment remains bounded as t → ∞ provided
γ > ∆/2. The effect of the noise is therefore to enhance
the unstable phase. An intuitive argument of van Kam-
pen [10] explains why this should be the case: positive
and negative fluctuations are equiprobable, but because
the noise is multiplied by the velocity, the negative fluctu-
ations have a stronger effect because they tend to increase
the velocity (whereas the positive fluctuations decrease
the velocity and have a lesser impact). For the second or-
der moment, one must consider simultaneously 〈x2〉, 〈ẋ2〉

and 〈xẋ〉, and study the linear system that couples them.
These three quantities become zero in the long time limit
provided γ > ∆. In this case, the system is said to be ‘en-
ergetically’ stable. The instability threshold thus depends
on the moment which is considered, due to the interplay
between noise and nonlinearities. Therefore, in contrast
to the deterministic case, a naive linear stability analysis
fails to lead to conclusive results. A more refined criterion
is needed to determine stability.

3 The Lyapunov exponent

The correct criterion that determines the stability of the
fixed point x = 0 is based upon the Lyapunov exponent
Λ, defined as

Λ =
1
2
〈 ∂t ln[δx2] 〉 =

〈
∂t(δx)

δx

〉
, (6)

where δx satisfies equation (4) linearized around x = 0.
It has been shown [12–14] that the sign of the Lyapunov
exponent, calculated with the linear part of the equation,
monitors the instability of the nonlinear oscillating sys-
tem. When Λ is negative, the trajectories of the nonlinear
system (4) almost surely decay to zero and in the long
time limit, the oscillator becomes localized in its rest po-
sition x = 0. On the contrary, if Λ > 0, the fixed point
x = 0 is unstable and the stationary probability density
of the oscillator is extended.

We now calculate the Lyapunov exponent as a function
of the parameters γ and ∆. Defining the variable z as
z = ∂t(δx)/δx, the equation satisfied by z is given by

ż = −1 − γz − z2 + zξ(t) . (7)

This is a Langevin equation involving the variable z alone
and coupled to a multiplicative noise (to be interpreted
in the Stratonovich sense). By definition (6), we observe
that

Λ(γ, ∆) = 〈z〉 . (8)

Using standard techniques [15,16], we obtain the Fokker-
Planck equation for the probability density P (z, t) at time
t. The stationary probability density Ps(z) satisfies:

∆

2
∂z

[
zPs(z)

]
+

1 + γz + z2

z
Ps(z) =

J

z
, (9)

where J is the constant current of probability. Here, the
current J does not vanish; intuitively, this is due to the
fact that z plays the role of an angular variable in phase
space and must be interpreted as a compact variable (see
[17] for more details). Equation (9) can be solved by vari-
ation of constants method and we obtain

Ps(z) =
2J

∆

∫ z

c

∣
∣
∣
∣
t

z

∣
∣
∣
∣

1+2γ/∆ 1
t2

exp
[
− 2

∆

(
Φ(z) − Φ(t)

)]
dt

+ A|z|−1−2γ/∆ exp
[
−2Φ(z)

∆

]
, (10)
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where Φ(t) = t − 1/t; the constant A and the reference
point c are not determined at this stage. We must impose
A = 0 so that Ps(z) is integrable at infinity (this implies
J �= 0). Furthermore, the function exp[Φ(t)] is exponen-
tially divergent when t → 0−; this remark fixes the choice
of the value of c in order to ensure that Ps(z) is integrable
at the origin (the cases z < 0 and z > 0 must be ana-
lyzed separately and two different reference points must
be chosen). Finally, we obtain,

Ps(z) =

{
1
N

∫ z

−∞ H(z, t) dt if z < 0
1
N

∫ z

0 H(z, t) dt if z > 0
(11)

where H(z, t) represents the function under the integral
sign in (10). Using equation (9), we find that the proba-
bility density (11) satisfies

Ps(z) ∼ J

z2
for z −→ ±∞ , (12)

Ps(z) ∼ J for z −→ 0 . (13)

This quadratic decay insures that the probability density
is indeed normalizable at infinity. The normalization con-
stant N can be calculated easily [18] and we obtain

N = π2

[
J2

2γ/∆

(
4
∆

)
+ Y 2

2γ/∆

(
4
∆

)]
, (14)

where J and Y are Bessel functions of the first kind and
second kind, respectively. This formula was derived in [19]
for the study of diffusion in a random medium.

According to equation (8), the Lyapunov exponent is
equal to the mean value of z calculated with respect to
Ps(z); this quantity will be evaluated in the sense of prin-
cipal parts

Λ = lim
M→∞

∫ +M

−M

zPs(z)dz . (15)

(Thanks to equation (12), the logarithmic divergencies at
−∞ and +∞ cancel with each other by parity). An exact
closed formula for the Lyapunov exponent can then be
derived and is given by

Λ =
8
N

∫ +∞

0

K1

(
8 sinhx

∆

)
sinh

[(
1 − 4γ

∆

)
x

]
dx,

(16)
where K1 is a modified Bessel function of the second
kind and the normalization constant N is given in equa-
tion (14). From this expression, the instability threshold
is readily found. Indeed, because the Bessel function is
always positive, the sign of the Lyapunov is the same as
that of the argument of the hyperbolic sine. We conclude
that the fixed point x = 0 is stable when

γ >
∆

4
. (17)

We find, as usual, that the stable phase is wider than what
moments stability predicts. Reverting to the initial vari-
ables, we observe that the instability threshold is given by
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Fig. 1. Typical evolution of the Lyapunov exponent as a func-
tion of the noise amplitude ∆. The circles/crosses are obtained
by numerical simulations of the nonlinear equation in the sta-
tionary regime for γ = 4 and γ = 1. The solid lines represent
the theoretical values (16) for the linearized equation.

r = D/4 which does not depend on the ‘linear frequency’
α of the oscillator. In the (r, D) plane, the critical curve in
the stability diagram of the x = 0 fixed point is simply a
straight line. We emphasize that this exact result is much
simpler than that obtained for the Duffing oscillator with
random frequency [13].

In Figure 1, we plot the Lyapunov exponent of the non-
linear equation (4) for γ = 1 and γ = 4. We observe that,
for Λ < 0, the numerical findings and the analytical pre-
diction are in perfect agreement. For higher values of the
noise, the nonlinear term can not be neglected: whereas
the linear Lyapunov exponent, given by equation (16) con-
tinues to grow, the Lyapunov exponent of the nonlinear
equation saturates to a value numerically close to 0 (rig-
orously speaking, the Lyapunov exponent should saturate
exactly to a null value because the system reaches a non-
equilibrium state when t → ∞). This indicates that the
nonlinear system has gone through a bifurcation: the fixed
point x = 0 has become unstable and in the long time
limit the system reaches an extended stationary state (in
our case a noisy limit cycle). A remarkable feature of the
curves displayed in Figure 1, is that noise can have a stabi-
lizing effect at small amplitudes: we notice that the curve
for γ = 4 decreases for small values of ∆ and then in-
creases. A closer inspection shows that this non-monotonic
behaviour occurs when γ > 2. This feature seems to con-
tradict the argument, presented in Section 2, stating that
a noise in the damping term always has a distabilizing
effect [10]. This contradiction stems from the asymmetry
of growth rate of the deterministic system around γ = 2.
Indeed, for γ < 2 the growth rate is a linear function of γ
(σ = −γ/2), whereas it has a very different expression for
γ > 2 (σ = −γ/2+

√
γ2 − 4/2). The positive and negative

fluctuations of the growth rate are therefore intrinsically
asymmetric, in contrast to the implicit assumption in van
Kampen’s argument.
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Fig. 2. Numerical simulations of the system (4) with γ = 1, k = 1 and ∆ = 3 (top left panel) corresponding to an absorbing
state and for ∆ = 4.5 (top right panel), corresponding to an intermittent state. The lower panels compares the probability
distribution for z obtained by simulations (dots) with the exact result (11) (full lines).

4 Intermittency above the threshold

As shown in Figure 2, the temporal series of the sig-
nal x(t) exhibits “on-off intermittency”above the insta-
bility threshold (i.e., for a positive Lyapunov exponent).
In other words, the amplitude x is vanishingly small for
the most of the time but exhibits sudden burst of activ-
ity. This behaviour has already been observed in chaotic
systems [20,21] and in systems driven by multiplicative
noise [22–26]. This intermittency can also be identified in
the probability distribution density. In Figure 3, we show
the probability density of the energy of the oscillator de-
fined as r =

√
x2 + ẋ2. Near the origin, we observe that

the probability distribution of r is a power law which is
generic of an intermittent signal. This power-law distri-
bution for the energy of the oscillator can be derived as
follows. From equation (4), we deduce that r satisfies

ṙ = −(γ + ξ(t))r sin2 θ − (
γ sin2 θ cos2 θ + k cos3 θ sin θ

)
r3,

where θ = arctan(ẋ/x) = arctan(z). This equation, to-
gether with (7), forms a system of stochastic equations.
A Fokker-Planck equation for the joint density P (r, θ) or
P (r, z) can be written but the resulting partial differential
equation seems unlikely to be exactly solvable.

We therefore make an approximation along the lines
of [13] and assume that, for small values of r, the proba-
bility density is separable and can be written as P (r, θ) =
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Fig. 3. Probability density (in log-log scale) of the variable
r =

√
x2 + ẋ2 for γ = 1, ∆ = 4.2 and k = 1. The dashed line

corresponds to the approximation (18).

Ps(r)Ps(θ). An average over the angular variable yields an
independent equation for Ps(r) that can be exactly solved:

Ps(r) =
1

Nr
r(B/A)−1 exp

[
−Cr2

2A

]
, (18)
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Fig. 4. Probability density (in log-log scale) of the variable
r =

√
x2 + ẋ2 for γ = 1, ∆ = 6 and k = 1.

where the coefficients A, B and C can all be expressed as
mean values over the variable z (or, equivalently, over the
angular variable θ):

A =
〈

∆z4

2(1 + z2)2

〉
, B =

〈
z2 ∆ − γ(1 + z2)

(1 + z2)2

〉
,

C =
〈

γz2 + kz

(1 + z2)2

〉
.

Multiplying equation (9) by z2/(1 + z2) and integrating
the result over z, the following identity is obtained:

B = 〈z〉 = Λ . (19)

The coefficient A being a positive quantity, we remark that
the function (18) is normalizable if and only if B = Λ > 0.
This provides a simple derivation of the stability criterion
that we have used: when Λ < 0, the fixed point x = 0 is
stable (the distribution (18) being not normalizable, the
stationary distribution is the Dirac function at 0); when
Λ > 0, the fixed point is unstable and the stationary dis-
tribution is extended.

The distribution (18) is obviously a power law for small
values of the variable r which is an indication for inter-
mittency. In Figure 3, numerical results (open circles) for
the probability distribution of the variable r are compared
with the analytical formula (18) (dashed line); the coeffi-
cients A, B and C have been calculated using (11). The
agreement between the two curves is excellent as far as the
power-law behaviour for small values of r is concerned. For
higher values of r, a discrepancy appears: the assumption
that the stationary distribution is separable is no more
valid and a specific analysis for large r is needed [13]. In
Figure 4, we plot the probability density of the energy for
a greater value of the noise: again the small r power law
is very well described by equation (18).

5 Effect of a colored noise

In order to study the effect of the temporal correlations
of the noise, we have performed numerical simulations of
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Fig. 5. Critical amplitude ∆� of the noise versus γ for a time
correlation τ = 1. The dashed line is a linear fit.

0 0.2 0.4 0.6 0.8 1
4

5

6

7

8

9

10

τ

C
(τ

)

C(τ) = 4 + 5.61 τ 

Fig. 6. Evolution of the critical slope as a function of the
correlation time. The dashed line is a linear fit.

equation (4), taking the noise to be an Ornstein-Uhlenbeck
process. In the stationary regime, the correlation of the
Ornstein-Uhlenbeck process is exponential:

〈ξ(t)ξ(t′)〉 =
∆

2τ
exp

[
−|t − t′|

τ

]
. (20)

Using the time series of the simulation results, we estimate
the Lyapunov exponent (by computing 〈ẋ/x〉) and identify
the bifurcation threshold. In Figure 5, we plot the critical
value of the noise intensity ∆ for the onset of instability as
a function of γ, the correlation time τ being equal to 1 (in
dimensionless units). We observe that the critical curve
has the shape of a straight line. Performing this analysis
for different values of τ , we have found that the critical
amplitude ∆� of the noise is almost linear with γ; hence,
to a good approximation, the critical curve is given by
∆∗(γ) = C(τ)γ. In Figure 6, we plot C(τ) as a function
of τ ; again the evolution is well described by a straight
line in the range 0 ≤ τ ≤ 1. These results indicate that
the structure of the bifurcation diagram for the Ornstein-
Uhlenbeck noise remains qualitatively the same as that for
the white noise.
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6 Conclusions

In this paper, we have studied the noise-induced bifurca-
tion of a nonlinear oscillator with a fluctuating damping
term. We have shown that the instability threshold of the
nonlinear oscillator can not be determined from a stabil-
ity analysis of the moments of the linearized problem; the
system is indeed more stable than the analysis of moments
indicates. This feature, that has already been noticed in
a variety of models [5,8,13], can be explained by the ex-
istence of long tails in the probability distribution of the
linearized system. These long tails have a greater influ-
ence on higher moments of x which are therefore less and
less stable. However, these long tails are suppressed for
the nonlinear system, which has, therefore, a well defined
stability threshold. For the problem considered here, an
exact calculation of the Lyapunov exponent has allowed
us to determine the exact stability diagram of the system.
Besides, we have shown that a good quantitative descrip-
tion of the system in the vicinity of the bifurcation can
be obtained if the probability distribution is assumed to
be separable in energy and angle variables. This Ansatz
allows us to calculate the power law exponent of the sta-
tionary probability and to predict intermittency. Our the-
oretical findings agree with numerical simulations. Finally,
we have studied numerically the effect of temporal corre-
lation of the noise by coupling our dynamical system to
an Ornstein-Uhlenbeck process, and have found that the
bifurcation scenario remains qualitatively the same. For
this latter problem, exact analytical calculations seem to
be out of reach; some quantitative information may, how-
ever, be obtained either by using one of the various Marko-
vian approximations for colored noise, or by considering
a special type of random process, such as the dichotomic
Poisson noise which leads, in the present case, to an ex-
actly solvable problem.

We would like to thank François Pétrélis and Stephan Fauve
for interesting discussions and suggestions on this paper.
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